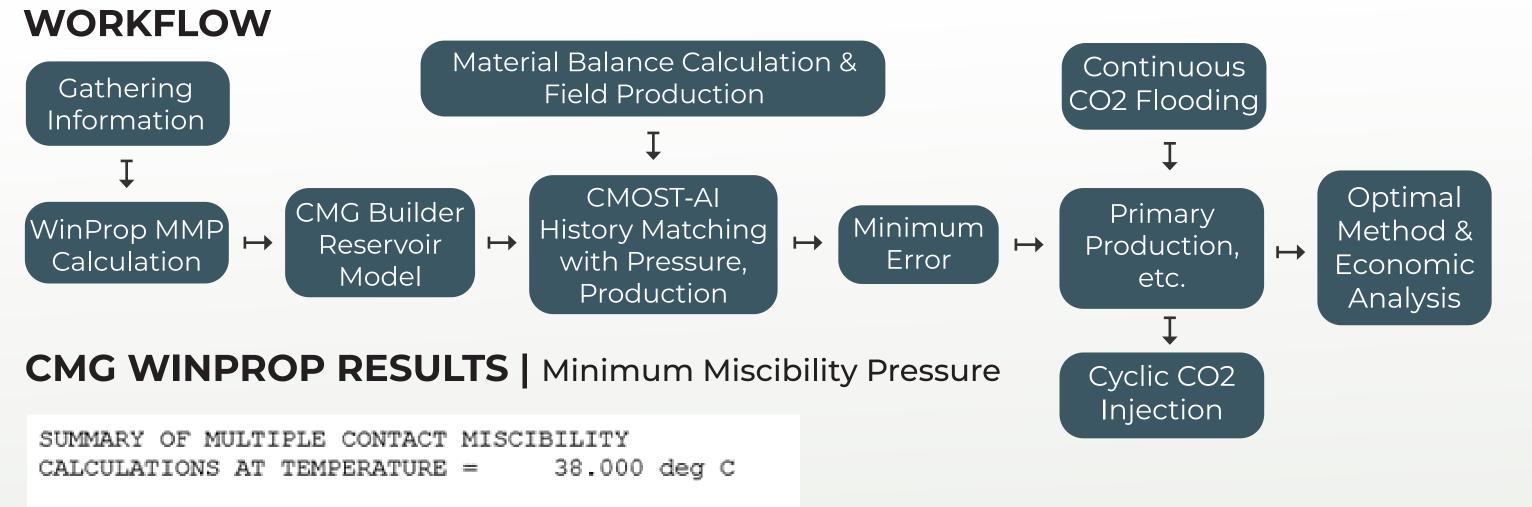
OPTIMIZATION OF A PARTIALLY DEPLETED LOW TRANSMISSIBILITY OIL RESERVOIR VIA CYCLIC/CONTINUOUS MISCIBLE CO₂ FLOOD

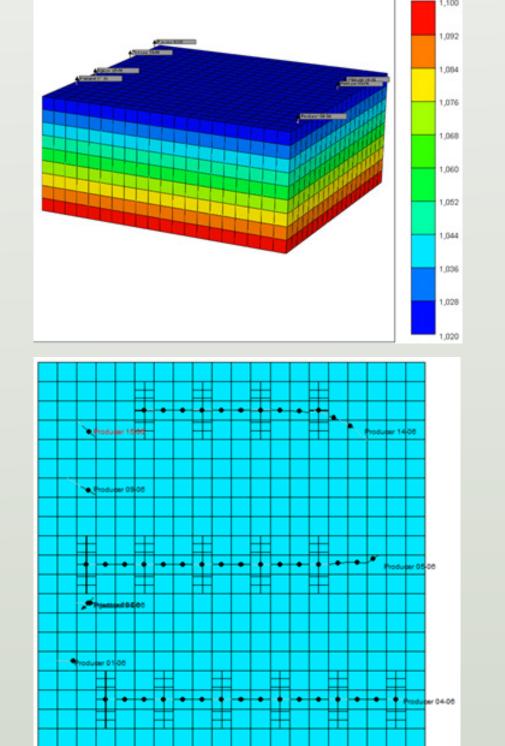
ABSTRACT


In this very insightful project, two eager to learn Petroleum Engineering students explore a topic related to Miscible CO₂ Enhanced Oil Recovery by using different flooding schemes, including continuous flooding and cyclic injection over a 10-year timeframe. The project works to determine which method is more efficent in optimizing the chosen formation, located in northwestern Alberta.

PROBLEM STATEMENT

Is continuous pure miscible CO₂ flooding more efficient than pure cyclic CO₂ miscible injection?

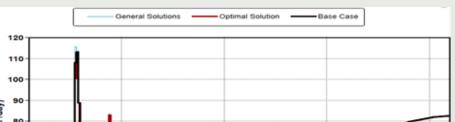
OBJECTIVES


- Determine most efficient injection method to optimize selected reservoir.
- Determine how each method impacts the flow rates of the selected formation.
- Determine how each method impacts the economic return of the project.

MULTIPLE CONTACT MISCIBILITY ACHIEVED AT PRESSURE = 0.95820E+04kPa MAKE UP GAS MOLE FRACTION = 0.00000E+00BY BACKWARD CONTACTS - CONDENSING GAS DRIVE

CMG BUILDER RESULTS CMOST RESULTS

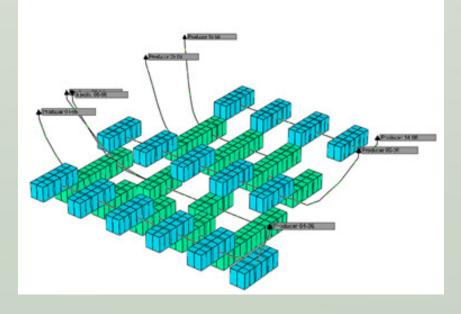
Model & Fractures



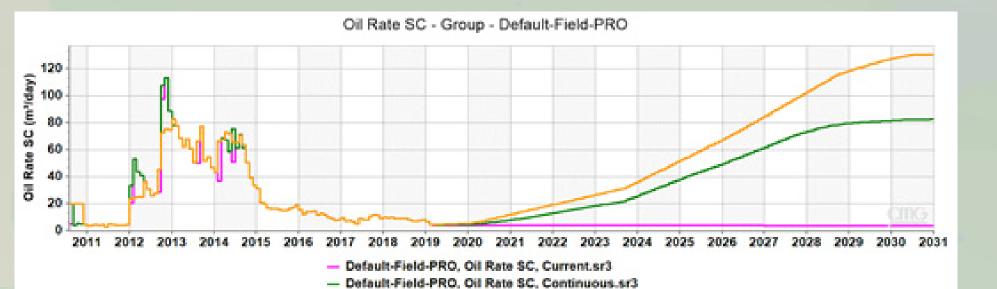
Oil, Water & Pressure Matching

CMOST RESULTS

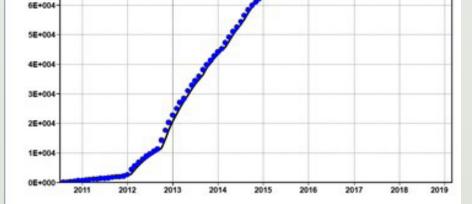
Continuous & Cyclic Methods **Oil Forecasting**

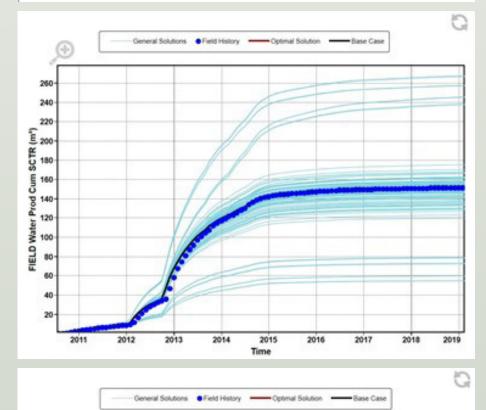

Montney Reservoir						
Depth	1040 m					
API	28					
Temperature	39°C					
Thickness	45 m					
Porosity	13%					
Permeability	20 mD in HZ direction					
OOIP	32,205,600 STB					
Solution Gas Oil Ratio	26,290 SCF/STB					
Production to date	543,204 STB					

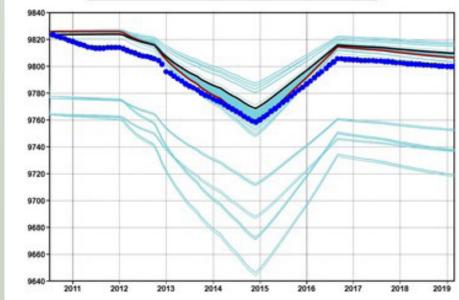
MATERIAL BALANCE


The following assumpttions were made to complete the Material Balance and Pressure Depletion Calculation:

- Pressure changes 10 kPa per month on top of the change in pressure calculated from Material Balance, which is 0.1% of initial pressure.
- The Waterflood adds 35 kPa in pressure per month, on top of the volume added from Balance, based on slow flow increase from wells indicating that this was about 0.3% of initial pressure.


49 Shown below is the plot of Pressure Depletion




COMPARISON OF METHODS Current, Cyclic & Continuous



Default-Field-PRO, Oil Rate SC, Cyclic.sr3

CONCLUSION

Based on these plots, the team has concluded that the most efficient method to optimize this reservoir is cyclic injection. This method also proves to be the most economically viable option under both \$30/bbl and \$65/ bbl based on the economic analysis conducted. The team also recommends an opportunity for CO₂ storage in this reservoir once it

per month as withdrawal volume out.

PROJECT LOCATION

Hamlet of Guy, Alberta

AKNOWLEDGEMENTS

Dr. Na Jai, Sam Hong, Runzhi Li, Haylie Huber

2A

becomes not economically viable to produce oil, due to low flow rates.

FINANCIAL SUMMARY

With Pipeline					CAPEX with Pipeline	
	Cyclic Injection at \$30/bbl	Cyclic Injection at \$65/bbl	Continuous Flooding at \$30/bbl	Continuous Flooding at \$65/bbl	Pipeline	\$ 9,960,000.00
Payout	over 10 years	8.3 years	longer than 10 years	9.9 years	Process Line	\$ 420,000.00
Netback (\$/bbl)	2.04	19	2.29	14.5	Comproscor	
Recovery Factor	7%	7%	4.50%	4.50%	Compressor	\$ 200,000.00
ROI	not profitable	0.47	not profitable	0.08	Storage Tank	\$ 1,300,000.00
EUR (bbl)	2,216,367.00	2,216,367.00	1,424,807.82	1,424,807	Total	\$11,880,000.00
F & D Costs (\$/bbl)	6.4	6.4	10	10.1		· · ·
Recycle Ratio	0.316	2.9	0.23	1.44	Total CO2 Costs	\$ 2,511,636.12
NPV	-\$4,800,685	\$6,709,361	-\$7,343,659	\$1, <mark>1</mark> 99,585	Total Investment	\$14,391,636.12

Without Pipeline					CAPEX without Pipeline	
	Cyclic Injection at \$30/bbl	Cyclic Injection at \$65/bbl	Continuous Flooding at \$30/bbl	Continuous Flooding at \$65/bbl		\$ -
Payout	6.2 years	3.6 years	7.3 years	4.8 years	Process Line	\$ 420,000.00
Netback (\$/bbl)	9.46	26.1	7.72	24.3	_	
Recovery Factor	7%	7%	4.50%	4.50%	Compressor	\$ 200,000.00
ROI	1.16	3.56	not profitable	2.52	Storage Tank	\$ 1,300,000.00
EUR (bbl)	2,216,367.00	2,216,367.00	1,424,807.82	1,424,807	Total	\$ 1,920,000.00
F & D Costs (\$/bbl)	1.99	2.089	3.11	3.11		
Recycle Ratio	4.72	12.49	2.48	7.9	Total CO2 Costs	\$ 2,511,636.12
NPV	\$5,159,314		\$2,616,341	\$11,159,585	Total Investment	\$ 4,431,636.12

Prepared by Andres Hernandez & Yubo Wang with Advisor Dr. Na Jia Petroleum Systems Engineering | Faculty of Engineering and Applied Science

749