
as well as class, activity, use case &
MVC detailed much of the
communication between backend
and frontend.

For the development stacks,
we planned to work with AWS. We
wanted to support playback for our
suggested music - something we
could not do on AWS. Therefore, we
opted for a desktop application as it would handle more songs in the
user’s possession - and most importantly, stay in their possession.

 Research included how we would suggest songs. Searching the web
revealed a dataset called million songs dataset. The technology that
was used to create the bulk of this dataset was bought by and is
presently used by spotify, so it is a pretty good place to start. The one
problem was that the data consisted only of the extracted features
leaving it to us to source the associated song files. The previously
proposed design of training a model on tensorflow was not feasible at
this point. This hurdle lead to more research and the discovery of
Essentia which included a variety of options for feature extraction.

Brandon Clarke, Jiwoun Kim, Mason Lane
200373287, 200329205, 200376573

SoundByte; Suggesting Music for DJs & Hobbyists

Method

We used JSON files to store song objects - which consisted of
extracted feature data. These would be used in our suggestion
calculations.

To extract feature data, we worked very hard to leverage EssentiaJS.
EssentiaJS is capable of estimating & extracting a plethora of audio
features. For our initial purposes, we used it to extract Key, Scale,
and BPM. There were some hurdles however; EssentiaJS uses very
large WASM files, which may not be larger than 4kb. This is a rule
used in Chromium to keep the Document Object Model (DOM) from
being held up. In order to use EssentiaJS, we needed to implement
web-workers which would leverage multithreading. In these cases,
WASM files may be larger. To our luck, Electron offers node module
support for its web-workers; something you cannot easily do with
just NodeJS. With these components in place, it was a trivial matter
of decoding WAV files, and sending the data to our web worker. We
used TuneBat to compare Essentia’s predictions with its actual
values - finding it to be exceptionally accurate.

 We also used a variety of NodeJS modules to aid EssentiaJS in this
task. Firstly, we use a module for reading WAV tags. From this, we
may derive information including the song’s title and author. Next,
we use a module for reading song length from WAV files - we
choose this over reading length tags, as we can guarantee a
value. We then use a WAV decoder to send data to our EssentiaJS
web worker.

Finally, we use a
module for our loading
bar in electron. This is
to inform the user of
the reading state.

Introduction

Aim

Research & Design

Results

 For advisory & general mentoring:

● Kin-Choong Yow. Ph.D. SSE
● Yasser Morgan. Ph.D. SSE
● Timothy Maciag. Ph.D. SSE

Node Modules & Dependencies:

● electron - MIT License
● electron-progressbar - MIT License
● essentia.js - AGPL-3.0 License
● get-audio-duration - MIT License
● music-metadata - MIT License
● python-shell - MIT License
● typescript - Apache-2.0 License
● wav-decoder - MIT License

Conclusion
 We are quite happy with the revelations made along the way, but
are also eager to explore improvements in the future. As an MVP, we
achieved the majority of our epics- but can see now the many
improvements our application may benefit from in future iterations.

In retrospective, our design of data types, suggestion models &
introduction of web-workers has enabled our application to evolve
in future iterations. It would not be hard to introduce the
aforementioned improvements.

Acknowledgements

Faculty of
Engineering
& Applied Science

 One problem we have not been able to surmount is the time
required for feature extraction. In our tests of ~10 songs, we found
that the initial setup held the DOM for too long.

Currently, our applications wait for a web worker to finish. It is
better practice for our web workers to run synchronously with the
application. what we propose is the following:

● Read tag data from songs, save to objects and json.

● Direct to library.

● If a Song object is not fully propagated, read the song’s WAV
into EssentiaJS. Refresh the DOM with full Song objects

● If a song fails to read, update the DOM
with a failure explanation. Allow
the user to delete or re-read the song

● Allow the user to remove or update or
add individual songs

● meanwhile, allow user to interact with
the DOM (play, pause, suggest)

● Requests for suggestions will consider only songs that are fully
read into our system. Partial, awaiting or failed songs will not.

Moving Forward

 Beginning with our problem, we conducted empathy mapping,
affinity diagrams and user stories. This was to ascertain what the user
would need most to enable their workflow & achieve our project’s
goal. Doing this, we were then able to develop a general storyboard -
which we would use for planning our roadmap on Jira. We also did
stakeholder analysis and risk management documentation as we
sought out requirements. Completing this stage, we finally took time
to write a formal document for our business case and project charter.

 Next, we began planning for the architecture of our application. This
included a collection of Lofi & Hifi diagrams for the user interface(UI)

 In the front-end side, the Electron framework had some learning
curves being different from native Javascript; such as navigation
between menus. Furthermore, being a desktop application meant
that we needed to test directory navigation for Linux & Windows.

 Initially trying to implement EssentiaJS on Electron/NodeJS was a
difficult task with its WASM sizes. Luckily, we were able to leverage
web workers for this task and ultimately benefited from EssentiaJS.

 During development, we also endeavored to include content
security policies - but our use of WASM files forced us to allow
unsafe-eval during our initialization component. This is not an error,
but also not good practice. We have yet to find a solution.

 We did cut some feature creep from our original design. This is
also in favor of changes we deem have greater priority.

 Ultimately, we created an application which extracts song features
within a decent margin of error - thanks to the use of EssentiaJS.
Our suggestion algorithm is capable of suggesting a similarity
percentage - but it is need of a more thorough weighting system.
Furthermore, our application includes features we deemed most
integral to the usability of the application, including random
suggestions, suggestions by song, suggestions by feature, view
filtering & suggestion scoring.

 Here, users may select a folder of WAV songs (it may be a folder of
mixed files - we simply read WAV only). From there, we await a
series of web workers to propagate our library json data with Song
objects. These web workers use EssentiaJS to extract our most
important features (Key, Scale, BPM) . Once finished, we direct the
user to the main library menu; here they may listen to music, sort by
various characteristics or request suggestions.

 Suggestions come in three forms, and return a Suggestion object.
A Suggestion object contains both our input & its results.

 Our application also includes various exception handling &
restrictions for user input - as well as a setting menu for
re-initializing a library.

Hurdles

Our decision to use Electron was based out
of familiarity with the framework, and also a
desire to leverage node modules on NodeJS.
Ultimately, our application used a mixture of
NodeJS and Python to handle backend
business logic. Our frontend consisted of JS,
TypeScript, CSS and HTML.

 Extracted data is stored as Song
objects, which contain a song
metadata object (for storing Key,
Scale, BPM).

Much of our middleware &
EssentiaJS backend is written in
TypeScript.

We elected to use TypeScript as it allowed us to follow a more
object-oriented design in line with our original architecture. This
allowed us to maintain Song objects, Suggestion objects, etc. You will
find that our suggestion & extraction code attempts to use inheritance
& varying design patterns to reduce the amount of repetitive code. In
our design we have made efforts to follow the open-closed principle in
regards to our types and suggestion logic.

Once features had been extracted from the song library and stored
within a JSON file in the application the next step was to put this data
to work. These features are leveraged in one of two ways. Firstly, the
user may pass Song objects from their library to receive suggestions.
Secondly, the user may create a Feature object from user-defined
features and pass it to suggestion algorithm. Once the error function
receives this Feature object it iterates over the users song library and
develops a measure of similarity. The library of songs is passed back
from the error function with each song containing its respective
measure of similarity. Note that we use a python-shell with NodeJS to
communicate between Python and NodeJS. This list of songs is then
built into a ResultsData object and passed to the front end to be
displayed, sorted and previewed. A Suggestion object contains input &
Result objects. This was designed to associate input with output.

 In Software Systems Engineering one of the fundamental
practices is to determine the context and scope of proposed
software before any work begins on the software design. With that
being said our app is given its context and scope through its users.
These users are DJs, musicians, content creators, hobbyists and
even the average music enthusiast. SoundByte aims to organize a
user’s music library in a fresh light and provoke new ideas on how
the user’s music can be used through suggested songs that would
make for a good music sample, mix, mashup, or fade out.

 In the year 2021 you’re likely no stranger to being recommended
music by some sort of software application, be it through social media
or a digital media streaming platform. SoundByte aims to recommend
songs for the sake of music creation, it does this by leveraging musical
features that SoundByte extracts from the user’s library. Many popular
services that recommend songs to its users typically use very
subjective features. SoundByte challenges the norm by using objective
features to fully place the power in the hands of the creator.
SoundByte’s use of musical features relinquishes creative control to
the artist while providing auxiliary guidance

https://github.com/electron/electron
https://github.com/AndersonMamede/electron-progressbar
https://github.com/MTG/essentia.js
https://github.com/caffco/get-audio-duration
https://github.com/Borewit/music-metadata
https://github.com/extrabacon/python-shell
https://github.com/microsoft/TypeScript
https://github.com/mohayonao/wav-decoder

