

University of Regina

Design of an Optimized Polymer Injection for a Lloydminster Reservoir

Introduction

Polymer flooding is one of the commonly applied enhance oil recovery method. This method is using polymer solution to increase sweep efficiency by reducing mobility ratio, improve water-injection profile, etc.

Generally, this method is applied for conventional oil which viscosity is lower than 150 cP. But in this project **oil** viscosity is around 5000 cP. The polymer-water alternative injection method has introduced in this project to do the optimization base on economic evaluation.

Background


The name of reservoir for this project is **Lloydminster-Alta Commingled pool 011** which is located at Lloydminster Alberta.

Property	Data	<u>00/10-31-050-01W4/0</u> <u>D0/08-31-050-01W4/0</u>
Porosity	0.314	• • • • • • • • • • • • • • • • • • •
API Gravity	16.1	D0/07-31-050-01W/4/0
Water Saturation	0.17	10/08-31-050-01/04/0
Oil Saturation	0.83	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Viscosity	5000cP	Figure 1. Lloydminister Commingled pool 011 from AccuMap

Objectives

- To compare and analyze simulation results of Water Flooding, Polymer Flooding and Primary Production;
- To design alternative Polymer Flooding process for different polymer WT%, injection rate and polymer-water injection period from 1989 to 2020;
- To determine the **best alternative** for Polymer Flooding from economic evaluation.

Ruijie Gao, Runzhi Li, Yu Zheng (Group# 8) Supervisor : Dr. Na Jia (Faculty of Petroleum Systems Engineering)

Туре	ppm	NPV(\$)	IRR	DROI
WF	0	5.77E+06	94.24%	2.462
PF	1000	8.60E+06	51.78%	3.169
PF-WF	1000	1.01E+07	64.46%	3.857
PF-WF	4000	1.38E+07	34.69%	4.425
PF-WF	5000	1.36E+07	31.54%	4.132

- All the faculty members of PSE Program