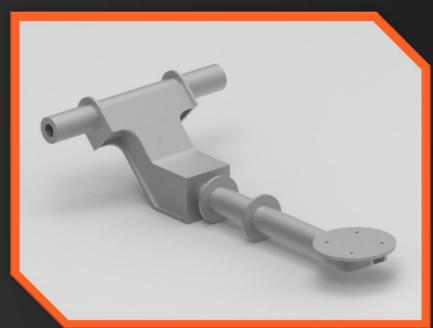


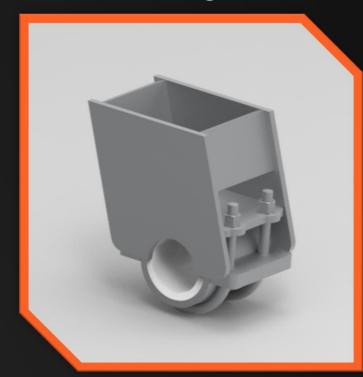
Brandt Heavy Haul Trailer - Wheeler Suspension Design


Project Goals

Jniversity

- Design a custom dual axle suspension for Brandt's Heavy Haul Trailer
- Select & design suspension components
- Provide engineering analysis of suspension system

Suspension Components


Trailing Beam

- Hollow member design to reduce cost and weight
- Optimized length to reduce component stress
- Flange stops to prevent collar movement

Hanger

- Split hanger design to create room for air spring
- Angled hanger to help reduce material build up
- U-bolt connection to trailing beam for easy maintenance

Collar

- Pivot point from axle to trailing beam to remove torque on beam
- U-bolt provides connection between:
 - Axle and collar
 - Collar and trailing beam
- Angled side plates for neutral axis welding to axle

Air Spring

- Rolling lobe air spring for compact assembly
- Maximum pressure of 100 psi at 14.8" outer diameter for 11000 lbs
- Calculated load of 8100 lbs at 80 psig
- Desired ride height of 10.5"

Acknowledgments - Brandt Industries Canada Ltd | Raymond Strelic & Brett Burke - Industry Advisors | Dr. Stilling - Supervisor

Faculty of Engineering & Applied Science Industrial Systems Engineering Project Day 2021 Group 6 Alexander Strelic Evan Desrosiers Justin Jones Kaden Bowerman-Moggey

4 Manufacturing

- A514 Grade B plate steel (100 ksi)
- A519 1020 CDSM tubing (75 ksi)
- Laser cut plate components
- MIG weld using E70S-6 wire
 - 5/16" fillet welds
- Formed plates

5 Cost Reduction

- Design for manufacturing
- Design for Assembly
- Commonality in fasteners
- Lower part count

6 Results

- Cost estimates done for a single suspension assembly
 - Six total assemblies per trailer
- Maximum stress from applied loading verifies sufficient material strength

A: Static Structural Equivalent Stress Time: 1 2021-04-04 4:37 PM 61588 Max 28000 15000 13000 10000 8000 6000 4000 2000 **3.0766 Min**

3

Compo

Trailing B

Hange

Colla

Air Spri

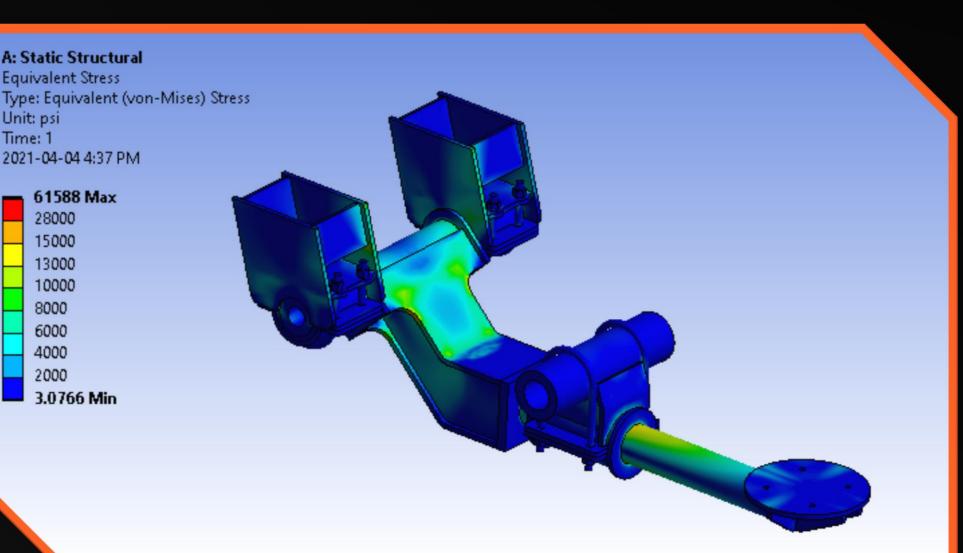
Hardwa

Total

Finite Element Analysis

Performed 3D static structural analysis using standard load

condition on suspension system


Model constraints:

- Fixed connection from hanger to trailer
- 15000 lb trailer load onto axle
- 1400 lb/in³ elastic support onto air spring plate

Utilized mesh convergence study with maximum allowable

change of 5% to ensure proper mesh sizing

 Analyzed using equivalent stress and equivalent elastic strain Maximum stress of 28000 lbs

Stress riser due to inability to correctly model welds

nent	Applied Load (lbs)	Max Stress (ksi)	Weight (lbs)	Material Cost (\$)	Manufacturing Cost (\$)
Beam	15000	30	331	813.28	240.80
ers	3500	8.5	143	351.36	104.00
ır	15000	1.1	47	115.48	34.18
ing	8100	-	23	200.00	-
are	-	-	6	160.00	-
I	-		550	1640.12	378.98