PART Background

Livestock manure is rich in nutrients and can be a valuable resource if used properly.

Poor livestock manure management may lead to potential risks of:

- Water contamination
- Nutrient accumulation
- Offensive odor production
- Spreading of pathogens

Freatment Process

- This project is about designing a manure treatment system.
- The system includes collection, transfer, storage, treatment and application.
- The main design is earthen manure storage (EMS) facility.

PART 03 Site Assessment

The project is chosen to be built 100 m to the south of Ell Dairy Farm Ltd.

The conclusion of site assessment is listed below:

- No surface water bodies nearby
- Hydrometer analysis and falling head permeability tests were performed to find soil parameters.
- High-density polyethylene liner is required.
- Sensitive resources: four wells nearby the site
- The site is close to main highway, farm, and crop fields.

Front view of the EMS components

Government of Saskatchewan (n.d.). Environmental Assessment Process. Retrieved from Saskatchewan: https://www.saskatchewan.ca/business/environmental-protection-andsustainability/environmental-assessment/environmental-assessment-process

Environmental Impact Assessment

Lohani and Thanh Method:

Project Activity Resources	Manure Collection	Manure Storage	Manure Treatment	Fertilization	Energy Generation	Lohani & Thanh
Air Quality	2 3	1 2	4 4	-1 2	4	208
Soil Fertility	1	1 2	3 3	4 5		320
Water Quality	4 6	1 6		-3		243
Pathogen Transmission	2 3	1 2	5 2			72

Conclusion: The positive scores indicate the project has positive impacts to

Cost of the Project

S	Price (in CAD)
	\$120,030
	\$405
ds	\$3,377
	\$180
	\$41,294
igester	\$1,200,000
	\$1,365,286

PART 07 Acknowledgements

• Faculty Supervisor: Dr. Jinkai Xue - University of Regina • Internal Co-supervisor: Dr. Yee-Chung Jin - University of Regina External advisor: Ms. Priscila Dickinson - SK Ministry of Agriculture • Laboratory supervisor: Mr. Ben Lichtenwald - University of Regina

Reference

• Anaerobic-Digestion. (2020, December 21). Anaerobic Digester Pant Explosions- Explosive Risk at Biogas Facilities. Retrieved from Anaerobic-Digestion: https://blog.anaerobicdigestion.com/anaerobic-digester-plant-explosion-blamed-on-gas-storage-epdm-failure/ • Dixon, M. (2016, May 24). Retrieved from

https://www.progressivedairy.com/topics/manure/manure-management-and-labor-you-might-be-

