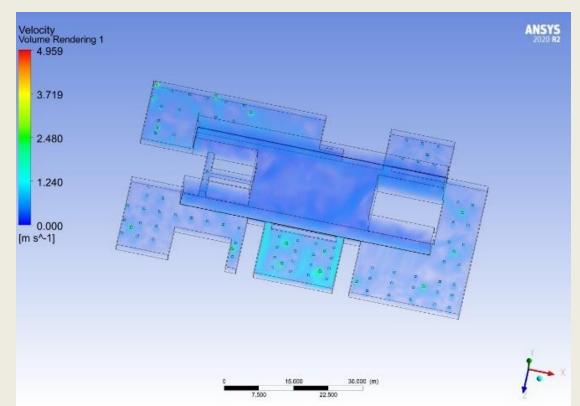
Improved Ventilation System for Reduction of Airborne Disease Transmission in the Library of University of Regina

Changyan Chen, Gangwei Dong, Songsong Wang, Zhenlin Zhou

Background


Infectious diseases such as the SARS virus which spreads through air and aerosols threaten the safety and health of human beings. From 2019 to 2021, the outbreak of COVID-19 and its transmission rates are very high in indoor facilities. Poor ventilation and inefficient disinfection are two main reasons that the COVID-19 virus transmits so rapidly indoors. Nowadays, all existing buildings (with the exception of hospitals) are not designed with infectious diseases in mind.

This project focused on providing some design strategies to improve ventilation system in the library of University of Regina based on the CFD simulation results and ASHRAE guideline.

CFD Boundary Condition

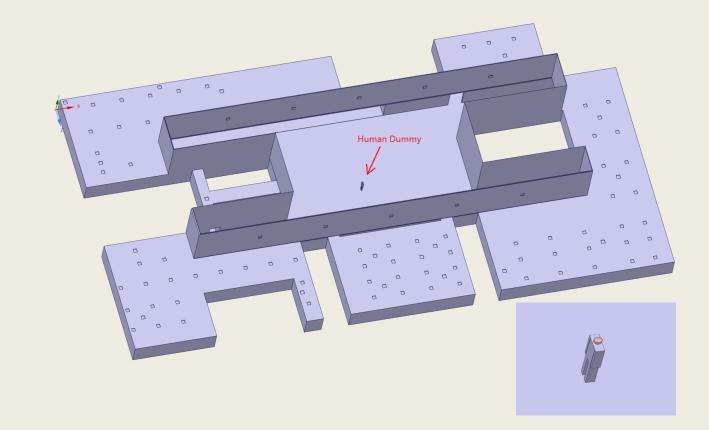
CFD Model Selection		Initial Canditions of Injections/Counting	
		Initial Conditions of Injections/Coughing	
Steady/Transient	Transient	Particle Diameter	3.1e-7 m
Dimension	3-D		000 000
Turbulence Model	SST K-omega	Particles per Coughing	200,000
Discrete Phase model	Water-Liquid (Five Injections)	Temperature of Droplets	37°C
Boundary Conditions		Duration of Coughing	0.5 s
Outlet	Pressure Outlet; Escape (DPM)	Coughing Velocity	10 m/s
Mouth	Velocity Inlet: Escape (DPM); Inject Using Face Normal Direction	Total Flow Rate	9.9e-12 kg/s
		Initial Conditions of Inlets	
		Velocity of Inlet (Group 1)	2.33 m/s
Inlet	Velocity Inlet	Velocity of Inlet (Group 2)	2.98 m/s
Wall	Wall (Standard Wall);	Velocity of Inlet (Group 3)	2.25m/s
Initial Condition of Environment		Velocity of Inlet (Group 4)	2.6 m/s
Temperature	20°C	Velocity of Inlet (Group 5)	2.18m/s
	23 0	Velocity of Inlet (Group 6)	1.9 m/s

Airflow Simulation Result

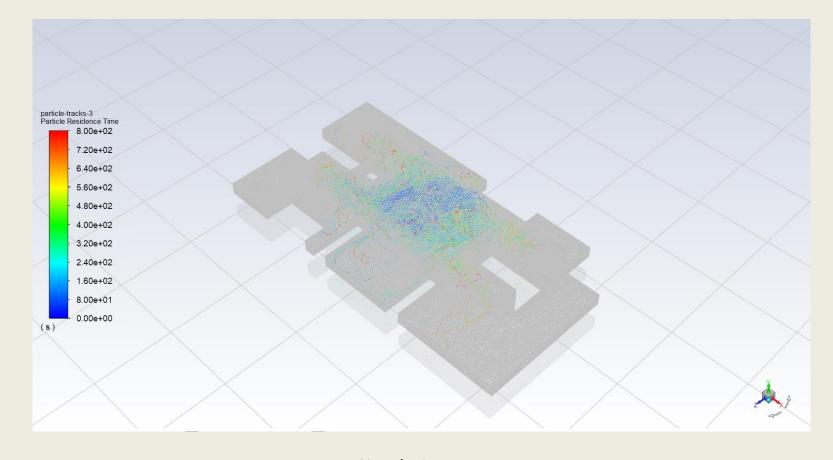
Airflow Pattern Simulation

- The central vaulted ceiling area is low flow rate area due to darker blue color presented.
- Studying room area is high flow rate area due to lighter blue color presented.

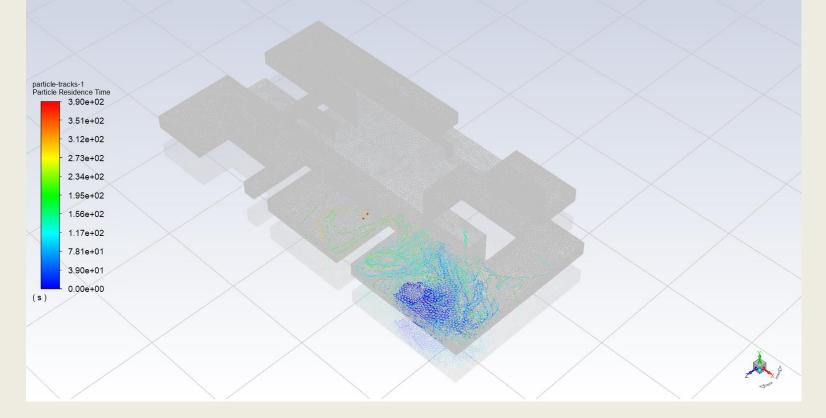
In summary, the ventilation performance in the central vaulted ceiling area is determined as poor. The poor performance of the air flow pattern is caused by the lack of outlets and inlets.

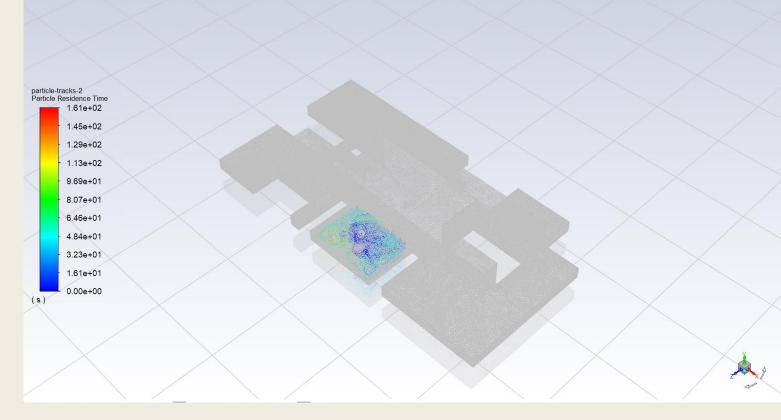


MERV 14 Filter


Bioaerosol Dispersion Simulation Result

- In the first simulation of the central vaulted ceiling area, the particles has spread into other areas and the residence time is long. After 800 s simulation, about 32% particles are still remained.
- The simulation of the study room area and bookshelves area both indicates that the particles did not spread into other areas and the residence time is short. After 150s, there are almost no residual particles exist.


As a result, only the central vaulted ceiling area is required to improve the performance of air flow pattern.


Library 3-D Model with Human Dummy

1st Simulation
(Scenario 1-Emission from Central Vaulted Ceiling Area)

2nd Simulation
(Scenario 2- Emission from Bookshelves Area)

3rd Simulation
(Scenario 3- Emission from Studying Room Area)

Ultimate Design Strategies

Strategy 1:Upgrade Return Air Filter from MERV 13 to MERV 14

- Filtration efficiency can increase from 66.3% to 81.4% for particle ranging from 0.3 to 1 micro in size.
- Total 32 filters need to upgrade. Dimension 24"×24"×12". Total cost is \$4863.36.

Strategy 2: Place a Protable HEPA-UV Air Cleaner

- The airflow passes the UV lamp first and then passes through the HEPA filter.
- UV-C unit is capable of disinfecting up to 99.9% of virus, bacteria.
- Specifications
 - Lamp life 18,000 hours. Power Consumption 220W External Dimenstions 48" X 12" X 5". Treated Area 430 Sq Ft.
- Installation of 3 devices totally costs \$8400.

3 Portable HEPA-UV Air Cleaners Placed in the Library

Conclusion

- Central vaulted-ceiling area has poor ventilation performance due to lack of fresh air outlet grids.
- CFD bioaersol simulation results show that higher particles escaped time occurs when the bioaerosol emission source located in the central vaulted-ceiling area.
- The upgrade of return air filter and placement of HEPA-UV are proposed as the final design strategies; total cost is \$13236.26.

Acknowledgments

- Amy Veawab
 Faculty Supervisor
- Tom Atkins
 Mechanical Engineer
 and Vice President
 in Stantec's Buildings group
- Rob Kleisinger
 University of Regina
 Facilities Management
 Manager of Mechanical Services